Battery Operation Time Enhancement Based On Alternating Battery Cell Discharge
ثبت نشده
چکیده
This paper proposes an alternating discharge method of multiple battery cells to extend battery operation time. In the proposed method, two battery cells are periodically connected in turn to a mobile device and only one cell supply power while the other rests. Battery operation time of the connecting cell decreases due to rate-capacity effect, while that of the resting cell increases due to recovery effect. These two effects conflict each other, but recovery effect is generally larger than rate-capacity effect and battery lifetime is extended. It was found from the result that increase about 7% by using alternating battery cell discharge. Keywords—Battery, Recovery Effect, Rate Low-Power, Alternating Battery Cell Discharge
منابع مشابه
Adaptive Discharge Time Control for Battery Operation Time Enhancement
This paper proposes an adaptive method to balance cell voltages in alternating battery cell method. In the alternating battery cell discharg cells are periodically discharged in turn. Recovery effect increases battery output voltage while the given battery cell rests without discharging, thus battery operation time of targe However, voltage mismatch between cells leads voltage difference betwee...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کاملMulti-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State
The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...
متن کاملThermal behavior of a commercial prismatic Lithium-ion battery cell applied in electric vehicles
This paper mainly discusses the thermal behavior and performance of Lithium-ion batteries utilized in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) based on numerical simulations. In this work, the battery’s thermal behavior is investigated at different C-rates and also contour plots of phase potential for both tabs and volume-mo...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کامل